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It is shown by an example of electrodynamic equations for a medium in which conduc- 
tivity depends on the current density, that the change of type of three-dimensional ope- 
rator in the system of equations with partial derivatives may lead to a nonevolutionary 
state of the system. The paper also discusses some physical factors which have not been 

taken into consideration in the equations and which slow down the rate of increase of 

perturbations, the. corresponding changes in the system of equations, which describe the 
current distribution, and the Possibility of obtaining steady-state solution. 

Emets’s paper [l] which recently appeared, discusses the two-dimensional stationary 

problem of the electric potential distribution for a mediurh which conductivity crdepends 
on the square of the current density. For a motionless medium this problem can be re- 
duced to the solution of a quasilinear equation of the second order with respect to the 
r.-component of the magnetic field B 

(1 - @B,=') B,,, + N'B,&,B,,,, + (1 - @B',y) B& = 0 (1) 
dC' da 

aJ =gge d=dl” 1 = & rot e,B 

As was shown in [l]. Eq.( 1) becomes hyperbolic if 

1 - 2(a’la)j9 < 0 (2) 

i.e. at a sufficiently fast increase of the conductivity with the increase of the current. 
A similar phenomenon in a medium with anisotropic conductivity is mentioned in p] , 
which confirms the instability of the regimes corresponding to the hyperbolic region of 

Eqs. (1). 
Let us consider the equations corresponding to the nonstationary processes. We shall 

limit our case by assuming that the perturbed current is in the same plane (z,v), and that 
j and B , as before, are independent of a. Ignoring displacement currents, we can write 

the following equation for B : 

Bd = (c’/ 4no) [(l - (DB,b) B,%% + 2’I’&&,B,xv + (i - @&,‘)&,,I (3) 

To analyze the stability and evolution behavior of a certain solution it is necessary to 

linearize Eq. (3) and study the behavior of small perturbations. It is obvious that the coef- 
ficienrs of the higher derivatives for perturbations of the magnetic field are the same as 
in the stationary solution, with respect to which the linearization was carried out. 

As the operator on the right-hand side of Eq. (3) is hyperbolic when condition (2) is 
satisfied, then we can choose the system of coordinates in such a way that the coefficients 
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of the second derivatives with respect to I and y , will have opposite signs. In our case 
it would be sufficidnt to direst the axis Y along the unperturbed current. In this case 
disturbances which depend only on .t aid t are described by an equation, principal 
terms of which are in turn equations of the thermal conductivity with the opposite sign 
of time. 

It is obvious that such an equation is not evolutionary [3] and arbitrary small pertur- 
bations of the magnetic field can attain finite values in an arbitrary short time. 

Therefore the steady regime described by Eq. (1) cannot be realized, for l-2j%‘/U<O. 

Owing to the rapid increase of perturbations, nonevolutionary equations cannot describe 
correctly changes of any physical quantity in time. Nonevolutionary solutions of the 
nonlinear equations in many cases can be regarded as a result of oversimplification in 
the derivation of these equations by discarding terms which are small for evolutionary 

solutions, but they can be essential for the perturbations which display a rapid increase. 

As the short wave disturbances increase most rapidly, then these could be the terms 

containing space derivatives of higher order or mixed derivatives with respect to space 
and time. 

As an example of that what has been said, we shall consider equations describing the 
current distribution in a case when u is the function of a quantity 9, which in turn obeys 

the equation of the type : e9,i = x89 + b(9~ - 0) + j*/u 

where x, b are nonnegative functions of 9 and ,j a. The quantity 0 can be for instance 
the temperature of “hot” current carriers in a plasma or in a solid. If the process is 
stationary and x = 0, then the function a(9) can be replaced in the equivalent way by 
the function u(j2). 

For simplicity sake we shall restrict our considerations to the case when an undisturbed 

solution is given by the equations B = Zz, 8 = const and. the perturbations depend only 
on z and t. Looking for the solution in the form efkxmuf when the k are real, we can 

show that the roots of the dispersion equations h, and ha are real, and the greatest of them 
A1 vanishes when k ‘= 0 together with the first derivative d& / dk and d%,/dk2 differs 
only in sign from the coefficient of B,, in Eq. (3). Thus, Eq. (3) describes correctly the 
behavior of long wave perturbations. In the case when 1 - @,I”< 0, the current distribu- 

tion is unstable. The rate of increase of perturbations h, is increasing at first with the 

rise of ka, and then at x # 0 begins to decrease so that A, -+ - 00 at kb CO. In this way 
the thermal conductivity leads to a damping of the short wave perturbations. If x = 0, 
then ka increases with the increase of h, but when ka -+ Q) it tends to a finite limit. In 
this case the rate of increase of perturbations is limited, as the finite value of the mate- 
rial thermal capacity e prevents very rapid increase of perturbations. It is interesting 
to note that if the displacement currents are taken into account in the electrodynamic 
equations we shall find that this leads also to limitation of the rate of increase of per- 

turbations for (T = u(js), in spite of the fact that in this case A is a very large quantity 
when1 k* is large. 

When the thermal conductivity is taken into account in Eq.(4), one can expect to find 
stationary solutions for the current distribution, each of these solutions at small values 
of x is close to a certain solution of Eq.(l) where it is elliptical and differs substantially 
from it in the regions where the condition of ellipticity is violated. Within these regions 
the quantity A.8 should be of the order of l/x,so that the product;xAe is comparable 
with other terms of the equation. 
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We consider the motion of a heavy solid with internal cyclical motions in a heavy ideal 
fluid of infinite extent under the conditions that the weight of the body and the Archi- 

medean buoyant force form a couple, and that the impulsive force is vertical (the Chap- 
lygin condition [l]). 

Three new special cases in which the equations of motion of the above mechanical 
system are integrable [l - 51 are considered. The equations in these cases admit of a 
system of three linear particular solutions. It is shown that all of these particular solu- 
tions are expressible in terms of elliptic functions of time, and that the rotational portion 
of the motions of the solid in the fluid described by these particular solutions is similar 

to the motion of a balanced gyrostat [6]. 
Algebraic solutions containing two arbitrary constants are given by Clebsch’s second 

and third cases of integrability of the Kirchhoff-Clebsch equations f2 and 31 of the clas- 
sical problem of internal motion of a solid bounded by a simply connected surface through 
an ideal fluid of infinite extent in all directions. These algebraic solutions immediately 

yield the “complete set” of four first integrals required for reduction of the problem to 
quadratures. 

Liapunov l’7] noted that Clebsch’s third case of integrability could be considered as a 

certain limiting case of his second case. The fourth first integrals for these Clebsch cases 
are represented in a single form. 

The fourth integrals in the classical cases of Steklov and Liapunov were reduced to a 
single form by Kolosov [8] and Kharlamov [9 and lo]. 

1. We consider the problem of motion in an unbounded ideal homogeneous imcom- 
pressible fluid of a heavy solid bounded by a simply connected surface with multiply con- 
nected cavities filled completely with an ideal fluid engaged in nonvertical motion. 
The Chaplygin conditions [l] apply, i.e. the weight of the body and the fluid in its cavi- 
ties and the Archimedean buoyant force form a couple. We assume that the motion of 
the boundless fluid due to the motion of the solid in it is nonvertical and that the fluid 

is at rest at infinity. 


